[6M]

II B.Tech I Semester Regular Examinations, March-2021 DIGITAL CIRCUITS AND LOGIC DESIGN (Common to ECE, CSE and IT)

Time: 3 Hours

Max. Marks: 60

Note: Answer ONE question from each unit (5 ×12 = 60 Marks)

UNIT-I

1.	a)	Obtain X and Y from (i) and (ii), respectively		[4M]
		(i) (AAAA.AA) ₁₆ =(X) ₈	(ii) $(212212)_3 = (Y)_6$	

b) Let A=(11101111)₂ and B=(00010001)₂ are represented in 2's complement form [8M] by using 8-bits, perform the following operations on A and B and represent the result using 16-bits.

(i) A+B (ii) A-B (iii) A*B (iv) A/B.

(**OR**)

2. Provide 16 basic distinct identities of Boolean Algebra. [12M]

UNIT-II

- a) Simplify the following logic function using Quine-McCluskey minimization [6M] technique.
 F(A,B,C,D,E) = Σm(2, 4, 6, 8, 23, 25, 27, 29)
 - b) Simplify function $F(A,B,C) = \Sigma m(1, 2, 4, 7)$ and implement using NAND gates. [6M]

(OR)

4. Design a full subtractor circuit. Provide truth table, K-maps, Boolean [12M] functions and logic diagrams.

UNIT-III

5. Design an efficient 64-bit adder using full adders. [12M] If the delay of a full adder is 2 units, then calculate delay of your design.

(OR)

6.	a)	Write differences between ROM and PROM		
	b)	Implement $F(A,B,C,D,E) = \Sigma m(0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30)$ using PROM and explain its procedure?	[8M]	
		UNIT-IV		
7.	a)	Draw the logic diagram of a D-Latch using NAND gates. Explain its Operation [using excitation table?		
	b)	Draw and explain 4-bit bi-directional shift register	[6M]	
		(OR)		
8.	a)	Explain the difference between sequential and combinational circuits?	[6M]	

b) Design a Modulo-4 ripple counter?

UNIT-V

- 9. a) Obtain the state table and state diagram for a sequence detector to recognize two [7M] consecutive zeros or ones.
 - b) How the Mealy is different from the Moore machine? [5M]

(**OR**)

10. Derive circuit that realizes the FSM defined by the state assigned table below [12M] using JK flip flops.

PS	NS, Z		
F3	X=0	X=1	
А	B,0	E,0	
В	E,1	D,0	
С	D,0	A,0	
D	C,1	E,1	
E	B,0	D,0	

* * * * *