II B.Tech I Semester Regular Examinations, March-2021 DIGITAL CIRCUITS AND LOGIC DESIGN
 (Common to ECE, CSE and IT)

Time: 3 Hours
Max. Marks: 60
Note: Answer ONE question from each unit ($\mathbf{5} \times \mathbf{1 2}=\mathbf{6 0}$ Marks)

UNIT-I

1. a) Obtain X and Y from (i) and (ii), respectively
(i) (AAAA.AA) ${ }_{16}=(\mathrm{X})_{8}$
(ii) $(212212)_{3}=(Y)_{6}$
b) Let $\mathrm{A}=(11101111)_{2}$ and $\mathrm{B}=(00010001)_{2}$ are represented in 2 's complement form by using 8 -bits, perform the following operations on A and B and represent the result using 16 -bits.
(i) $\mathrm{A}+\mathrm{B}$ (ii) $\mathrm{A}-\mathrm{B}$ (iii) $\mathrm{A} * \mathrm{~B}$ (iv) A / B.
(OR)
2. Provide 16 basic distinct identities of Boolean Algebra.

UNIT-II

3. a) Simplify the following logic function using Quine-McCluskey minimization technique.
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E})=\Sigma \mathrm{m}(2,4,6,8,23,25,27,29)$
b) Simplify function $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C})=\Sigma \mathrm{m}(1,2,4,7)$ and implement using NAND gates.
4. Design a full subtractor circuit. Provide truth table, K-maps, Boolean functions and logic diagrams.

UNIT-III

5. Design an efficient 64-bit adder using full adders.

If the delay of a full adder is 2 units, then calculate delay of your design.

(OR)

6. a) Write differences between ROM and PROM
b) Implement $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E})=\Sigma \mathrm{m}(0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30)$ using PROM and explain its procedure?

UNIT-IV
7. a) Draw the logic diagram of a D-Latch using NAND gates. Explain its Operation using excitation table?
b) Draw and explain 4-bit bi-directional shift register
(OR)
8. a) Explain the difference between sequential and combinational circuits?
b) Design a Modulo-4 ripple counter?

UNIT-V

9. a) Obtain the state table and state diagram for a sequence detector to recognize two consecutive zeros or ones.
b) How the Mealy is different from the Moore machine?

(OR)

10. Derive circuit that realizes the FSM defined by the state assigned table below [12M] using JK flip flops.

PS	NS, Z	
	$\mathrm{X}=0$	$\mathrm{X}=1$
A	$\mathrm{~B}, 0$	$\mathrm{E}, 0$
B	$\mathrm{E}, 1$	$\mathrm{D}, 0$
C	$\mathrm{D}, 0$	$\mathrm{~A}, 0$
D	$\mathrm{C}, 1$	$\mathrm{E}, 1$
E	$\mathrm{B}, 0$	$\mathrm{D}, 0$

